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There exists a known self-modelling solution (see, e.g. [1 and 2]), of the
problem of a e¢ylindrically symmetric shock wave converging towards its axis.
Any other solution of this problem in the vicinity of the axls can be regarded
as asymptotic to the self-modelling one. The self-modelling solution indi-
cates an unlimited growth of temperature and velocity with decreasing dis-
tance from the axls. Therefore, in the space near the axis of an order of
magnitude of the mean free path of particles,dlssipative phenomena, in the
first instance due to viscosity and thermal conductivity, become pronounced.

In the following a solution has been derived for the case of a fully ion-
i1zed plasma which takes into account these phenomena. It can be treated as
a refinement of the self-modelling one.

The proposed solution may be criticized as to its physical meaning, par-
ticularly with respect to the structure of the shock wave front, on the
grounds that a hydrodynamic approximation is inadequate for a case in which
the characteristic scale for the change of magnitudes 1is of the order of the
free path of particles. Nevertheless, one can reasonably expect that the
hydrcdynamlc approach will give a qualitatively correct representation of
the phenomena in the vicinity of this axis with viscosity and thermal con-
ductlvity effects accounted for, as much as 1ts application was proved under
the more stringent conditions in the case of a plane shock wave [3].

1. We shall now consider a system of hydrodynamic equations whlch take
into account fundamental dissipative phenomena, namely: thermal conductivity
and viscosity of lons, thermal conductivity of electrons, and the energy
exchange between lons and electrons by way of collision. For a cylindrically
symmetric wave in a perfect plasma of mass ¥ of ilons, ilon unit changes, and
assuming the adiabatic exponent to be vy =%/, , thils system of equations
is (4]

d [k i} d 0 1 0|
o B U e T A

2
3 k4T k dp  Ou \2 u [0Ou u 1 0 oT
sewra—wlw = o) T )T () —e
3 k do i dp 1t 0 a0 dp 1 0 =
O IO Ty o M) T O G ey () =0

1172



Shuck wave in the presence of dissipative phenomena 1173

Here u 1s the coefficlent of viscosity of ions; x, and x, are, respec-
tively, the thermal conductivity coefficlents of ions and electrons; ¢ 1s
the rate of energy transfer from lons to electrons, and u and p are the
veloclty and density of plasma. In these equations account has been taken
of the different temperatures of the ions and electrons, denoted by T and
© , respectively. The limits of applicability of these equations to plasma
are known [5].

In accordance with the kinetic theory of plasma its dissipation parameters
are [6 to 8]
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Here L 1s the Coulomb logarithm, m 1s the mass of an electron, e is
the elementary electric charge, and k the Boltzmann's constant.
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From (2) we easily find
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tive results we shall consider a
a deuterium plasma, and assume
(M / m)': = 60.5.
We shall apply system (1) to the solution of a problem, where p = po and
u=7=@ =0 are given on the segment 0 <7 <{r° at the initial instant.

Pig, 1

The boundary conditions are
oT a6
u=_0, —6;=E:O for r=0 (6)
dar® k
E-=u’ HP(T"*'@):f(t) for r=r°

where function [f(¢) is the same as in the self-modelling solution (¥*)

*) Strictly speaking, the left-hand side of the second boundary condition
which represents the radial component of the impulse stream should read
k/Mp(T + 8) — ¢’,,, where o, 1s the component of the viscosity tensor.
However, the value of the additional term ¢, 18 very small.
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If the moment of focusing of the self-modelling wave 1s taken as the zerc
time reference, then the self-modelling solution depends only on parameters
po &nd g5, where [r¥ = £, 1is the equation of the shock wave front,

v = v{y) is the self-modelling exponent which in the case of v = 7a; 18
v = 1,226 .,

Stated in thils way, our problem has four independent determining parame-
ters, viz. pos fu, Mo 8nd %, We shall substitute dimenslonless varlables,
selecting as units the following
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characteristic of the mean free
path, as from (3) and {7) we find

that .
T ®)
a5 4,
B Here T and p are dimension-
_...—-—-:ﬁ-—-&z;“
1" 00§ less and the factor of the order of
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It can be easily proved that the
Pig. 2 dimensionless functlions which we

; \\M’ shall again denote by o, u, I &and
4, must satisfy the system of equa~
i 1 tions (1) and (4) (with uy= x/W¥=1),
\ the initial conditlons yu=7=@ =0
SrgEy and p=1 for O r<CR=71r,
ﬁ\k and the initisl conditions (6) in
their dimensionless-form. Conse~
\ quently, there remains in our prob-
o [ & lem one determining parameter F
. which may be called the Reynolds
‘ Number. Let us consider the influ-
o-ﬂ?‘/ i ence of this parameter by assigning

ar to it a certain value A = R, . The
problem as stated and with boundary
conditions as in the self-modelling

solution has a meaning, only if at

¢ radil r~ R, the effects of visco-

22 sity and therm&l conductivity are
insignificant. In other words, 1t

o is essential that the shock wave
reaches the self-modelling state

4 before any of the dissipative effects

begin to take place. But then for
r > B, the solution can also be
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assumed to be a self-modelling one, as this will lead to the same conditions
for r =R,, 1.e. any arbitrary selection of R > R, will have no effect
on the solution for 7 < f, . Therefore, if the stated problem has any mean-
ing, 1ts solution 1s independent of parameter # , and it will be sufficient
to solve it for [{;;]?* once only. The numerical value of A, can be deter~
mined 1n the following manner. The effects due to viscosity and thermal
conductivity become appreciable at distances of the order of ! . From For-
mula {8) we have _l%_f;;,{___:l:z (9)
r R p
These effects will be negligible at radii ~ r® , whenever 1, /r° is suf-

fieiently small. With T and p taken from the self-modelling solutlon,
we obtain from (9) A,~1 .

~ There exists, therefore, a category
of problems concerning converging shock
79 /’ \\\ P waves in which dissipative effects may
alter their solution qualitatively, as
{ compared to the results obtained in the
§Q::\ 2 self-modelling solution. A similar
— 7 situation had been noted in [9] which
: dealt with the problem of flooaing of
\7\“\\¢ T bubbles in a viscous fluld for which
04 two qualitatively different types of
solution were obtained.

Our problem was solved by a numeri-
2244 4 cal method similar to the described in
- [4]. Some of the results of these
computations are given below. There is
a great simlilarity between the self-
// modelling solution and the solution
0:j ¢ for a converging shock wave up to the
37 027 23 moment at which the distance of the
wave front from the axls becomes com-
PFig. 5 parable to the width of the blurred
zone of the front, l.e. to the free
path length ! = T%p. The most signi~
ficant differences between the two
solutions become apparent after the reflection of the wave frum the axis.
The distributlon and numerical values of o, u, T and @& are shown for this
stage as functions of r 1in Figs. 1 to 4 for moments of time indicated
thereon. Fig.5 gives p, 7 and @ as functions of time.

In the self-modelling solution the density at the moment of focusing
{t = 0) 1s throughout equal 7, then 1t increases up to the moment of arrival
of the reflected wave to 11.7, when 1t jumps to 22.9. At the axis p = 0O ,
while the mean density 1n the space between the axis and the reflected wave
it is equal to 19.2 at all times,

It will be seen from a comparison of our solution (Pig.1l) with the self-
modelling one that the greatest difference in densities appears in the vici-
nity of the axis where o = 20 to 24. At the reflected wave front it is
close enough to p ~ 24 to 22, as given by the self-modelling solution, while
the mean density 1s somewhat greater. The formula for the maximum tempera~
ture Tpe arrived at in the self-modelling solution for a given radius r
18 Tmax = 0.224,79452, and is reached at the reflected wave front. The cor=
regponding value of T + @ calculated for distances up to r =~ 0,1 differs
significantly from Tew . The zone in which O < r < 0.1 may therefore be
considered as that for which the proposed solution differs from the self=-
modellling one. It is of the order of several tens of the free path. Inside
it T4+ 6T xo and T and ® reach their maxima of 0.61% and 0.268,
respectively, at the axis.
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The proposed method can be applled for the theoretical assessment of tem-
peratures and densitles at the focusing point of shock waves not only of an
ionized plasma but for other problems 1nvolving dlssipative phenomena of a
different nature,

The Authors wlsh to express thelr thanks to V.V. Paleichlk, who had car-
ried out all of the computations on a computer, and to Ia.M. Kazhdan for
kindly putting at our disposal the results of his calculations of the sgelf-
modelling solutlon.
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